Astari, A. J., Lovett, J. C., & Wasesa, M. (2025). Sustainable pathways in Indonesia's palm oil industry through historical institutionalism. World Development Sustainability, 6, 100200. https://doi.org/10.1016/j.wds.2024.100200
Prasetya, A., Wasesa, M., & Sunitiyoso, Y. (2025). How Can Business Analytics Enhance Decision-Making in Oil and Gas Surface Facilities?. IEEE Access. https://ieeexplore.ieee.org/document/11050428/
Ariono, B., Wasesa, M., & Dhewanto, W. (2025). Revealing Building Information Modeling Adoption Factors in Indonesia: A Mixed-Methods Exploration Through Constant Comparative Method and Structural Equation Modeling. Engineering Management Journal, 37(2), 163-182. https://doi.org/10.1080/10429247.2024.2386512
Anisah, S., & Wasesa, M. (2025). Improving Café Reputation: Machine Learning Analytics for Predicting Customer Engagement on Google Maps. Journal of Information Systems Engineering & Business Intelligence, 11(1). https://doi.org/10.20473/jisebi.11.1.91-102
Sudjono, S. S., Hakam, D. F., & Wasesa, M. (2025). Advancing towards indonesia's net zero emission goals: An in-depth multi-criteria decision making (MCDM) analysis of ship-loader operations in maritime transportation using interval type-2 fuzzy AHP and TOPSIS methods. Energy Reports, 14, 552-565. https://doi.org/10.1016/j.egyr.2025.06.014
Wasesa, M., Rizaldi, A., Stam, A., Zuidwijk, R., & Van Heck, E. (2024). Advancing Smart Sustainable Seaports: Auction-based Truck Appointment System for Automated Container Terminal. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3445711
Wasesa, M., Afrianto, M. A., Ramadhan, F. I., Sunitiyoso, Y., Nuraeni, S., Putro, U. S., & Hastuti, S. (2024). Using smart card data to develop origin-destination matrix-based business analytics for bus rapid transit systems: case study of Jakarta, Indonesia. Journal of Management Analytics, 11(3), 471-494. https://doi.org/10.1080/23270012.2024.2371518
Wasesa, M. (2024). Business Analytics to Support Sustainable Community-Based Tourism: Insights from a Community Development Project in Pengudang Village, Bintan, Indonesia. In Social Decision Systems Science: Theory and Applications in Southeast Asia (pp. 117-130). Springer. https://doi.org/10.1007/978-981-97-5219-5_7
Sagala, P., Wasesa, M., & Sunitiyoso, Y. (2024). The data divide in pharma: A comparative case study of business analytics capabilities impact on performance. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3457762
Friansa, K., Pradipta, J., Nanda, R. M., Haq, I. N., Mangkuto, R. A., Iskandar, R. F., ... Wasesa, M.,& Leksono, E. (2024). Enhancing University Building Energy Flexibility Performance Using Reinforcement Learning Control. IEEE Access. https://doi.org/10.1109/ACCESS.2024.3512543
Wasesa, M., & Sateriano, F. N. (2023). Estimating Public Electric Vehicle Charging Stations Demand in Jakarta: An Agent-Based Approach. In 2023 IEEE International Conference on Agents (ICA) (pp. 19-23). Kyoto Japan. IEEE. https://doi.org/10.1109/ICA58824.2023.00013
Andariesta, D. T., & Wasesa, M. (2023). Machine learning models to predict the engagement level of Twitter posts: Indonesian e-commerce case study. Procedia Computer Science, 227, 823-832. https://doi.org/10.1016/j.procs.2023.10.588
Wasesa, M., Hidayat, T., Andariesta, D. T., Natha, M. G., Attazahri, A. K., Afrianto, M. A., ... & Putro, U. S. (2022). Economic and environmental assessments of an integrated lithium-ion battery waste recycling supply chain: A hybrid simulation approach. Journal of Cleaner Production, 379, 134625. https://doi.org/10.1016/j.jclepro.2022.134625
Wasesa, M., Andariesta, D. T., Afrianto, M. A., Haq, I. N., Pradipta, J., Siallagan, M., ... & Putro, U. S. (2022). Predicting electricity consumption in microgrid-based educational building using google trends, google mobility, and covid-19 data in the context of covid-19 pandemic. IEEE Access, 10, 32255-32270.https://doi.org/10.1109/ACCESS.2022.3161654
Andariesta, D. T., & Wasesa, M. (2022). Machine learning models for predicting international tourist arrivals in Indonesia during the COVID-19 pandemic: a multisource Internet data approach. Journal of Tourism Futures. https://doi.org/10.1108/JTF-10-2021-0239
Afrianto, M. A., & Wasesa, M. (2022). The impact of tree-based machine learning models, length of training data, and quarantine search query on tourist arrival prediction’s accuracy under COVID-19 in Indonesia. Current Issues in Tourism, 25(23), 3854-3870. https://doi.org/10.1080/13683500.2022.2085079
Febriminanto, R. D., & Wasesa, M. (2022). Machine Learning Analytics for Predicting Tax Revenue Potential. Indonesian Treasury Review: Jurnal Perbendaharaan, Keuangan Negara dan Kebijakan Publik, 7(3), 193-205. https://doi.org/10.33105/itrev.v7i3
Wasesa, M., Ramadhan, F. I., Nita, A., Belgiawan, P. F., & Mayangsari, L. (2021). Impact of overbooking reservation mechanism on container terminal’s operational performance and greenhouse gas emissions. The Asian Journal of Shipping and Logistics, 37(2), 140-148. https://doi.org/10.1016/j.ajsl.2021.01.002
Muhammad, A., Putro, U. S., Siallagan, M., Kijima, K., & Wasesa, M. (2021). System of Diagnostic Systems framework and its application to the disharmony in Indonesian national security. Systems Research and Behavioral Science, 38(1), 31-49. https://doi.org/10.1002/sres.2656
Wasesa, M., Stam, A., & van Heck, E. (2017). The seaport service rate prediction system: Using drayage truck trajectory data to predict seaport service rates. Decision Support Systems, 95, 37-48. https://doi.org/10.1016/j.dss.2016.11.008
Wasesa, M., Stam, A., & van Heck, E. (2017). Investigating agent-based inter-organizational systems and business network performance: Lessons learned from the logistics sector. Journal of Enterprise Information Management, 30(2), 226-243. https://doi.org/10.1108/JEIM-07-2015-0069